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Mobile Robot Self-Location Using Model-Image 
Feature Correspondence 

Raj Talluri, Member, IEEE, and 

Abstract- The problem of establishing reliable and accurate 
correspondence between a stored 3-D model and a 2-D image 
of it is important in many computer vision tasks, including 
model-based object recognition, autonomous navigation, pose 
estimation, airborne surveillance, and reconnaissance. This paper 
presents an approach to solving this problem in the context of 
autonomous navigation of a mobile robot in an outdoor urban, 
man-made environment. The robot’s environment is assumed 
consist of polyhedral buildings. The 3-D descriptions of the lines 
constituting the buildings’ rooftops is assumed to be given as 
the world model. The robot’s position and pose are estimated 
by establishing correspondence between the straight line features 
extracted from the images acquired by the robot and the model 
features. The correspondence problem is formulated as a two- 
stage constrained search problem. Geometric visibility constraints 
are used to reduce the search space of possible model-image 
feature correspondences. Techniques for effectively deriving and 
capturing these Visibility constraints from the given world model 
are presented. The position estimation technique presented is 
shown to be robust and accurate even in the presence of errors 
in the feature detection, incomplete model description, and occlu- 
sions. Experimental results of testing this approach using a model 
of an airport scene are presented. 

I. INTRODUCTION 

OMPUTER vision researchers are interested in building C intelligent robots that can navigate autonomously without 
human intervention. The uses of such an autonomous mo- 
bile robot are numerous, ranging from providing access to 
hazardous industrial environments to battlefield surveillance 
vehicles. However, a number of issues and problems must be 
addressed in the design of an autonomous mobile robot, from 
basic scientific issues to state-of-the-art engineering techniques 
[I]. 

A mobile robot can be assisted in its navigation tasks by 
providing it with a priori knowledge about the environment 
in which it will navigate, usually called a world model or 
a map. This map can be in various forms, such as a CAD 
description of the environment, a floor map, or, in the case 
of an outdoor terrain robot, a Digital Elevation Map (DEM). 
One of the issues to be addressed in using a stored model 
as an aid in mobile robot navigation is that of estimating the 
position and orientation of the robot with respect to the model. 
Once the robot accurately estimates its location within the 
model, other navigation tasks can be performed. Most mobile 
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robots are equipped with wheel encoders that can estimate 
the robot’s relative position at every instant; however, due 
to wheel slippage and quantization effects, these estimates of 
the robot’s position contain errors. These errors accrue and 
can grow limitlessly as the robot moves, causing the position 
estimate to become increasingly uncertain. So, most mobile 
robots use additional forms of sensing, such as vision to aid the 
position estimation process. Talluri and Aggarwal [2] present 
a comprehensive review of the different position estimation 
techniques for mobile robot self-location. 

In order to effectively use the stored world model of the 
environment and the sensor data, it is necessary to establish 
correspondence between the sensory observations and the 
model information. Typically a visual sensor such as a CCD 
camera is used to record an optical intensity image of the 
scene. Depending on the environment, the model may be a 
floor map, a CAD model (in the case of indoor robots), or a 
Digital Elevation Model (DEM) (in the case of outdoor robots). 
The problem of model-image correspondence is particularly 
hard since usually the model and image are in different for- 
mats, described in different coordinate frames and of different 
dimensions. 

This model-image correspondence problem is important 
in many other computer vision tasks, such as model-based 
object recognition, pose estimation, airborne surveillance, and 
reconnaissance. A popular approach to solving this problem 
is to extract features from the image and search for the 
corresponding set of features in the model description. The 
type of features required and the number of features used 
depends on the model description and what is assumed to be 
known about the scene. For example, in navigating a robot in 
an indoor structured environment with a given CAD model of 
the environment, it is common practice to use line segments 
as features [3]. On the other hand, in navigating a robot in an 
outdoor mountainous terrain given a DEM of the environment, 
using curves may be a logical choice [4]. Typically, in these 
problems the model and the camera (robot) use two different 
coordinate systems. Once we extract the relevant features 
from the image and identify the corresponding features in 
the model, we can compute the transformation that maps the 
model features into the image features. The parameters of 
this transformation are the required position and pose of the 
camera (robot) with respect to the model. Solving for these 
parameters, once a set of model-image feature correspondences 
is established, is a very well studied problem [5].  

In the context mobile robot self-location, it is possible 
to exploit some of the constraints imposed by the fact that 
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Fig. 1. The world and robot coordinate systems. 

most mobile robots navigate on the ground plane in reducing 
the number of degrees of freedom in the transformation 
that maps the world model features into the image features. 
Consider the world coordinate system O X Y Z  and the robot 
coordinate system O’X’Y’Z’ shown in Fig. 1. Generally, the 
transformation 7 that transforms O X Y Z  into O’X‘Y‘Z’ has 
six degrees of freedom: three rotational and three translational. 
Most mobile robot self-location tasks make the assumption that 
the robot is on the ground ( O X Y  plane), so the Z-translation 
(the height of the robot above the ground) is assumed to be 
known or to be zero. The camera on the robot is assumed 
to have zero roll (rotation about X-axis), and the tilt angle 
of the camera, (rotation about the Y-axis) is assumed to be 
measurable. So, there are effectively three parameters in the 
transformation: two translational (X, Y )  and one rotational f3 
(the pan angle of the camera, which is a rotation about the 
Z-axis). The parameter space of the transformation is thus 
the entire OXY plane and the range of robot orientation 0 is 
0-360”. In the rest of this paper, position refers to the robot’s 
location 9n the ground plane and pose refers to the robot’s 
orientation We use the term position estimation to refer to 
both position and pose estimation. 

Therefore, the crucial task to be accomplished is that of 
establishing a reliable and accurate correspondence. Noise, 
occlusions, errors in feature detection, and inaccurate model 
descriptions further complicate this correspondence problem. 
In this research we consider this model-image correspondence 
problem and its application to the task of mobile robot self- 
location. The robot is assumed to be navigating in an outdoor 
urban, man-made environment. The environment of the robot 
is assumed to consist of polyhedral buildings withfit (parallel 
to the ground plane) rooftops. The 3-D descriptions of the 
line segments composing the buildings’ rooftops make up the 
world model. It is possible to obtain such a description from 
a CAD description of the environment. The robot images the 
environment using a single CCD camera. The position and 
pose of the robot are estimated by establishing correspondence 
between the world model features (the buildings’ rooftops) and 
the image features (lines extracted from the image). We present 
a two-stage constrained-search strategy that draws from the 
existing body of work in model-image feature correspondence 
to establish a reliable and accurate correspondence even in 

the presence of errors in feature detection, incomplete world 
model descriptions, and occlusions. 

We argue for the use of precompiled recognition strategies 
and the idea that the complexity of the search lies in the 
world model rather than the image. We wish to exploit the 
geometric visibility constraints imposed by the world model 
description in pruning the search space’of all possible model- 
image feature correspondences. In order to capture these 
constraints effectively, we propose a new representation of the 
environment known as the Edge Visibility Regions (EVR’s). 
We present an algorithm to construct such an EVR description 
of the environment from the given world model description. 
The EVR description is a partitioning of the free space of the 
robot into distinct, nonoverlapping regions. Each region has 
an associated Visibility List (VL) of the world model features 
visible in that region. The EVR’s are essentially a mechanism 
to group the model features based on geometric visibility 
constraints. 

Once an EVR description of the environment is formed 
off-line from the given world model, a two-stage constrained- 
search strategy isolates the robot’s location using the EVR 
description. The first stage is a modified Hough transform 
technique that uses the image features, the EVR description, 
and a transform clustering strategy to narrow the robot’s 
location to a small set of possible regions. This modified 
Hough transform technique avoids the shortcomings of the 
traditional Hough transform approaches [6] but retains the 
noise immunity provided by transform clustering. 

The second stage of the search is a fine search among the 
reduced set of possible locations returned by the first stage 
to establish an accurate set of model-image feature corre- 
spondences and estimate the robot’s position and pose in its 
environment. We use an interpretation-tree search technique to 
establish modehimage feature correspondences. The geometric 
constraints captured by the EVR’s are used to prune large sub- 
spaces in the tree. Also, since the EVR’s provide an effective 
mechanism to capture the visibility constraints based on the 
3-D model geometry, we are able to extend the traditional 
interpretation-tree and constrained-search approaches [7], [XI 
to situations where the model data is 3-D and the image data is 
2-D. One of the drawbacks of the constraints used by Grimson 
is that the model and sensor data need to be of the same 
dimensionality, i.e., 2-D data and 2-D models or 3-D data and 
3-D models. His constraints cannot be extended to the case of 
a 3-D model and a 2-D image since the camera’s perspective 
projection geometry destroys these length, angle and distance 
constraints. 

Unlike previous approaches [9], [lo] that use the weak 
perspective approximation, we handle the model-image feature 
correspondence under full perspective. Also, unlike previous 
research [3], in this research we solve the drop-off problem 
Ell], where the robot does not have a good initial estimate of 
its location. However, we show that when the robot has a good 
initial estimate of its position, this information can be used to 
significantly reduce the search complexity. In this research we 
describe model-image feature correspondence strategies that 
exploit the advantages of grouping, transform clustering, and 
constrained search while avoiding some of their drawbacks. 
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The effectiveness of the technique is demonstrated by applying 
it to the problem of mobile robot self-location. Experimental 
results demonstrating the effectiveness of this approach using 
a model of an airport scene are also presented. 

The rest of the paper is organized as follows. Section I1 
presents an algorithm for deriving a new representation of the 
environment of the mobile robot from the given stored world 
model. This representation implicitly captures the geometric 
visibility constraints established the world model. Section I11 
details a two-stage constrained-search strategy that uses these 
constraints to establish an accurate and reliable correspondence 
between the model and the image and, hence, estimate the 
position and orientation of the robot in its environment. 
Section IV presents the experimental results of testing the 
ideas presented in this paper using a model of an airport 
scene. Finally, Section V summarizes the ideas presented in 
this research and points out future research directions. 

11. EDGE VISIBILITY REGIONS 
This section presents an algorithm for capturing the geomet- 

ric visibility constraints imposed by the robot’s world model 
description [12]. The constraints are captured implicitly by 
developing a new representation of the environment knows as 
Edge Visibility Regions (EVRs) from the given stored model. 
The EVR’s essentially provide a mechanism for grouping the 
model features based on their visibility from different positions 
on the ground. 

We assume that the robot’s environment consists of polyhe- 
dral buildings, and that the 3-D descriptions of the buildings’ 
rooftops is given as the world model. Initially, we consider 
the restrictive case that all the buildings have $at (parallel to 
the ground plane), convex rooftops and are the same height. 
We then develop an algorithm to generate the EVR’s and their 
associated VL’s. The extension of this algorithm to the general 
case of buildings of unequd heights and nonconvex rooftops is 
then discussed. In the former case, only the projections of the 
buildings onto the zy-plane need to be considered in forming 
the EVR’s and VL‘s, since the tilt angle 4 is assumed to be 
measurable. 

One problem similar to this problem is that of forming 
the aspect graph of a polyhedral object for object recognition 
[13]-[19]. The aspect graph provides a complete enumeration 
of all possible distinct views of an object, given a model 
for viewpoint space and a definition for distinct. Bowyer and 
Dyer [19] provide a good summary of existing aspect graph 
techniques for object recognition. However, the existing aspect 
graph methods concern mainly a single polyhedral object and 
divide the entire 3-D view space into regions based on the 
visibility of the object’s faces, edges, and vertices. As a result, 
although the aspect graph representation is an interesting idea 
for use in object recognition, the representations are usually 
very complex and limited to single, convex polyhedra. So far 
no existing, working systems can handle cases of multiple, 
general polyhedra [20]. 

The present work t ies  to capture the essence of the aspect 
graph representation by forming a partitioning of the robot’s 
free space into the EVRs. However, we alleviate the problems 

of the traditional aspect graph representations by considering 
only a small subset of the model features-the rooftop lines. 
Furthermore, since we are only concerned with estimating the 
position and pose of an autonomous mobile robot, (x, y, e) ,  
we need to consider only one plane, the ground plane, as the 
viewing space. These constraints reduce the complexity of the 
representation significantly while exploiting its advantages. 
Also, we can now handle multiple, nonconvex buildings in 
arbitrary orientations. 

Hence, our approach is a simplification of the aspect graph 
representation, to the specific case of the camera being located 
on a single plane. However, our approach does consider the 
occlusions and the various other visual events that arise due 
multiple polyhedral objects and occlusions between them. In 
view of these differences, we found that the existing aspect 
graph algorithms could not be extended to handle the this 
specific problem. We thus derive a new technique for carving 
the free space into visibility regions using which is similar 
in spirit to the aspect graph algorithms but exploits the 
simplifications offered by the constrained viewpoint. 

There is a significant body of work in computational ge- 
ometry on the various visibility problems that arise while 
considering polygons [2 I]-[23]. Toussaint [22] provides a 
comprehensive review of the visibility properties of polygons. 
However, although our work has some similarities to some 
of the problems studied, none of them are directly applica- 
ble since we deal with the visibility properties of multiple 
polyhedral objects and under perspective projection. This 3-D 
nature of the world model and the projective geometry of 
the camera inhibit the direct applicability of the existing 
computational geometry techniques for polygon visibility. 
Nonetheless, we do exploit some of the techniques from 
computational geometry in computing the EVR s from the 
given world model description. 

We describe below the algorithm P a r t i  t i o n  that divides 
the xy plane into the desired EVR’s, along with their asso- 
ciated VL’s. The algorithm uses three subprocesses called 
S p l i t ,  P r o j e c t ,  and Merge. The algorithm’s basic idea 
is to start with the entire zy-plane as one EVR with a NULL 
visibility list. Each polygon is considered in turn by extending 
each of its edges, and the EVRs that are intersected are 
divided into two new ones. The new EVR’s then replace the 
old one, and the VL’s of the new EVR’s are updated to account 
for the visibility of this edge by considering it to be visible in 
one half-plane, say the half-plane into the left of the edge, and 
invisible in the other. S p l i t  process handles this updating. 
For each new polygon considered, the mutual occlusion of the 
polygon’s edges with the other existing polygons is handled 
by forming the shadow region of these edges on the other 
existing polygons. P r o j e c t  handles the forming of these 
shadow regions. Finally, the Merge process concatenates all 
the adjacent EVRs with identical VL’s into one EVR. 

After partitioning the sy-plane into EVR s ,  the range of the 
robot’s orientations for which each model edge in the VL of 
an EVR is visible is also computed and stored. An efficient 
method to compute these ranges is also described. 

S p l i t  : Given a 2-D convex polygon in a plane and 
a set of existing EVR’s, the S p l i t  process updates the 
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(a) 

Fig. 2. (a) The EVR’s after S p l i t .  (b) The shadow region for two lines. 

EVR list to account for the visibility of the polygon’s edges. 
Consider an n-sided convex polygon P in the viewing plane 
defined as a collection of n vertices, 211, 112, . . . Un, and n 
edges, 1 1 1 ~ 2 ,  ~ 2 ~ 3 ,  . . . wn-1vn, 1~~211,  such that no pair of 
nonconsecutive edges shares a point. Then 

1) extend each of the edges of P,  u 1 u 2 ,  ..., 21,211, in 
order and for each of these lines; and 

2) check if this line cuts an existing EVR in the current 
EVR list. If it does, split the EVR into two along t i s  
line, copy the VL of the EVR into the two new EVR’s, 
update the EVR list by replacing the old EVR by the two 
newly formed ones, and update the VL of the region 
to the left of this line by adding this edge, u,u,+1, to 
its VL. 

Fig. 2 shows the EVR’s and their VL’s after extending all 
the edges of P. 
project: The Project is used to account for the 

mutual occlusions between lines and polygons that affect their 
visibility from different locations in the viewing plane. The 
process is first described for two line segments and then for a 
line segment and a polygon. 

Case 1: Consider the case of two lines, 1112 and m1m2, in 
a plane, as Fig. 2(b) shows. We now need to find the region 
in the plane where 1112 is not visible due to occlusion from 
m1m2. Note that m 1 m 2  lies to the left of (the visible side 
of) the directed line segment 1112. Let us refer to this region 
as the shadow region of m 1 m 2  due to 1112. One way to find 
this shadow region is to extend the line llml and then to 
find the intersection of this line with the viewing plane, as 
m 4 ;  similarly, extend l 2 m 2  and find m3. Now the region 
m 1 m 2 m 3 m 4  is the desired shadow region. The lines ~1.721~~4 

and m 2 m 3  are referred to as the shadow lines of m1m2 due 

Case 2: Consider the case of a line segment 1112 and a 
convex polygon P in a plane. We need to find the shadow 
region of P due to the line 1112 when P lies on the visible side 
of 1112. This region is the intersection of the shadow regions of 
each edge v,w,+1 of P due to 1112. An easier way to compute 
this shadow region is to find the two vertices of P,  x, and 
y, such that the shadow region of the line segment xy due to 
1112 is the desired shadow region of P due to 1112. The two 
vertices x and y are referred to as the shadow vertices of P 

to 1112. 

due to 1112. Consider the two sub cases: 
0 Subcase 1: As shown in Fig. 3(a), the entire polygon lies 

to the left of the line 1112. That is, the extension of the 
line does not cut any of the edges of the polygon. 

* Subcase 2: As shown in Fig. 3(b), only part of the 
polygon lies to the left of the line. That is, the extension 
of the line cuts some of the polygon’s edges. 

The determination of the shadow vertices is different in each 
Subcase. P r o j e c t  detects these Subcases and uses a different 
method in each. For Subcase 1, shown in Fig. 3(a), the shadow 
vertices are found as follows: the vertex of P corresponding 
to the maximum of the angle L 12 11 w,, i = I, 2, . + . n gives the 
shadow vertex x, and, similarly, the vertex of P corresponding 
to the maximum of Ll1l2v,, i = I, 2 ,  . . . n, gives the shadow 
vertex y. 

It is slightly more involved to find x and y in Subcase 
2, shown in Fig. 3(b). First, the convex hull of the points 
211, 212, 213, . . . U, and 12 is formed. Then the two vertices of 
the convex hull adjacent to 12, v1, and 113 are considered. Of 
these, the vertex to the left of line 1122 is considered to be the 
shadow vertex y and the other vertex is considered to be x. 
Hence, x = 211 and y = 214. To find the shadow region, line 
l lx  is extended and its intersection with the plane is found 
as a; similarly the intersection for the line 12y is found as b. 
Thus, the shadow lines are xu and yb and the shadow region 
is xaby. Once the shadow region is formed, the edge 1112, 

numbered as 5 in Fig. 3(b), is marked as invisible and, hence, 
is removed from the VL’s of all the EVR’s that lie inside 
this shadow region. Note that in Subcase 2, all of the shadow 
region does not Lie in the visible side of the line 1112. As a 
result, we have adjacent EVR’s with identical VL’s. However, 
the Merge process, to be discussed next, accounts for this 
situation. 
Merge : Given an EVR list and the associated VL’s, this 

Merge process searches the list for adjacent EVR’s with 
identical VL’s. Since the EVR’s are actually convex polygons, 
two EVR’s are considered adjacent if they have one edge in 
common. These EVR’s are then merged into a single EVR, and 
the EVR list is updated if they have identical VL’s. This step 
runs iteratively, each time merging the adjacent EVR’s and 
forming new ones until no two adjacent EVR’s have identical 
VL’S. 
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(a) 

Fig. 4. (a) The complete EVR representation. (b) The EVRs  of a building 

A. The Algorithm Partition 

Given a list of convex polygons and a viewing plane, 
the algorithm’s divides the viewing plane into EVR’s and 
forms their associated VL’s. The algorithm initially assumes 
the entire viewing plane to be one EVR and then iteratively 
splits this plane into subregions, considering each of the 
polygons in turn using the process S p l i t .  Whenever a new 
polygon is considered, not only are the existing EVR’s split 
to account for the edges’ visibility, but the occlusions of the 
polygon’s edges, due to all the other existing polygons in the 
plane, are also considered, using the Pro  j ec t process. The 
Merge step is run after each P r o j e c t  step to merge adjacent 
EVR’s having the same VL’s. As described before, the routine 
Spl i t (P,LIST) takes a polygon P and an EVR list LIST, 
and modifies the EVR’s in LIST and their associated VL’s, 
depending on the visibility of the polygon P’s edges. The 
Pro  j ect(e,P,List) routine takes in an edge e, a polygon P, 
and an EVR list LIST and modifies the LIST and the associated 
VL’s accounting for the occlusion of e due to the edges of P. 
The Merge(L1ST) routine takes an EVR list, LIST, merges 
the adjacent EVR’s having the same VL’s, and returns the 
modified LIST. 

7 

394 345 35 

(a) 

Fig. 3. (a) The shadow regions for Subcase 1. (b) The shadow regions for Subcase 2. 

(b) 

with a nonconvex rooftop. 

The list ALLPOLYGONS contains all the given model 
polygons. The algorithm iteratively calls S p l i t  on each of 
these polygons to divide the viewing plane into EVR’s. Also, 
after calling S p l i t  for each of the edges of the CURRENT- 
POLYGON, we call P r o j e c t  to handle the occlusions of 
these edge due to the edges of the already existing polygons 
in the plane. We then call Pro  j ec t to handle the occlusions 
of the other edges due to these edges also. After each call to 
P ro jec t ,  we call Merge to merge the adjacent regions with 
identical EVR’s. Finally the algorithm returns with the list of 
EVR’s describing the environment in the EVRLIST, along 
with the EVRs’ VL’s. 

Fig. 4(a) shows the resulting EVR’s generated by the above 
process for a simulated urban environment. The environment 
considered here consists of three buildings. There are 79 
EVR’s for this given scenario. 

An interesting and important question related to using 
this method is how many EVR’s are generated using the 
P a r t i t i o n  algorithm. If the number is very large, it is 
impractical to use the method. One might think that the number 
of distinct EVR’s grows exponentially with m and n, the 
number of polygons atrd-the“berofpi$e 5 of each pdygoii, 
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Algorithm P a r t  i ti  o n  : 

Input: A set of convex polygons in a plane. 
Output: A set of EVR's and their associated VL's. 
1. Initialize 

1.1 Initialize the EVRLIST to 

1.2 §et the VL of this region to NULL. 
1.3 Initialize the USEDJ'OLYGONS 

contain one region, the viewing plane. 

list to NULL. 
2. For ( i = 1 to i < No-ofALLPOLYGONS ) 

do 
2.1 §et CURRENTPOLYGON = 

2.2 Call Split(CURRE"rPOLYGON, EVRLIST) 
2.3 For ( j = 1 to j < No-of-USEDPOLYGONS) 

ALLPOLY GONS (i) 

a0 
2.3.1 For ( k = 1 to k < No-of-edges-of 

(CURRENTPOLYGON) ) 
do 
2.3.1.1 Call P r o j e c t  

[EDGE-of(C"TPOLYGON,k), 
USEDPOLYGONS(j),EVRLIST) 

2.3.1.2 Call Merge(EVRL1ST) 
endo 

2.3.2 For ( k = 1 to k < No-of -edges-of 
(USEDPOLYGONS(j)) ) 

a0 
2.3.2.1 Call P r o j e c t  

(EDGE-of(USEDSOLYGONS('j),k), 
CURRENTSOLYGON,EVRLIST) 

2.3.2.2 Call Merge (EVRLIST) 
endo 

endo 
2.4 USEDPOLYGONS (No-of-USEDPOLYGONS) 

2.5 Increment No-of-USEDPOLYGONS 
endo 

3. Exit 

=CURRENTPOLYGON 

respectively. In Appendix B, we derive an upper bound on the 
maximum number of EVR's generated and show that this is 
polynomial in m and n, O(n2m4). However, this is a very 
loose upper bound and, in practice we can never generate this 
many regions, as Appendix B explains. 

B. Estimating the Range of Orientations 

For each model edge in the VL of an EVR, the range of 
robot orientations for which this model edge is visible in the 
EVR is also computed and stored. Below is an efficient method 
to compute the range. Given an EVR and a model edge e, in 
the VL of the EVR, we need to find the lower bound, Bmin, 

and the upper bound, d,,, of the robot's orientation angles 
for which this edge e, is visible in the EVR. Let the vertices of 
theEVRbev,, i =  1, ' . . n . L e t p l , p ~  betheendpointsofe,. 
Then it is easy to show that Qmln is the minimum of the angles 
made by the lines joining p2 to w,(i = 1, . . . n) and that Om,, 
is the maximum of the lines joining p l  to v,, i = 1, . . .  n. 

Hence, given an EVR and a model edge e, in its VL, the 
maximum and minimum orientation angles are estimated by 
considering only the EVR vertices. 

c. Generalizations 

In the case of buildings with nonconvex rooftops, the non- 
convex polygons representing the rooftops' projections onto 
the xy-plane are decomposed into a set of adjacent, component 
convex polygons. The convex decomposition of nonconvex 
polygons is a well studied problem [23], [24]. Decomposing 
a simple polygon into nonoverlapping components can be 
done with or without introducing additional vertices, which are 
commonly called Steiner points. Since we are to process these 
polygons further, we are only interested in decompositions 
that do not introduce additional points. Green [24] developed 
an O(n log n) algorithm that finds a decomposition within 
four times of the minimum decomposition when Steiner points 
are disallowed. Our work uses this algorithm to decompose 
the nonconvex polygons composing up the rooftops into 
convex subpats. The extra edges added in the process of 
converting a nonconvex polygon to adjacent convex polygons 
are considered dummy edges. The P a r t i t i o n  algorithm is 
then modified so that the dummy edges are not used in the 
spli t  process and their occlusions are not considered in 
the Project process. Essentially they do not contribute to 
the VL's of the EVR's but do serve to make the algorithms 
developed in this work even in the nonconvex cases. Fig. 4(b) 
shows the EVR's of a building with a nonconvex rooftop. 
Here, the self occlusions of the edges of a nonconvex polygon 
are handled by decomposing the polygon into component 
convex polygons, and dealing with their mutual occlusions 
using the Project process. 

When the buildings are of unequal heights, the P r o  j ec t 
process is more complicated. In forming the shadow region of 
an edge e onto a polygon P,  it is insufficient to consider just 
two polygons' vertices in forming the shadow region, since 
the heights of the edge and the polygon are different. So, the 
Pro j ec t process is modified as follows: the two shadow 
vertices x and y of P are computed as before, and the two 
end points of the edge e ,  el,  and e2, are then projected onto all 
the edges of P lying between x and y and on the polygon's 
invisible side, that is, the side of P where e is not visible. 
Since e and P are of different'heights, the projections from 
el intersect the viewing plane, forming a convex polygon PI,  
and similarly, the projections from e2 form a convex polygon 
P2. The intersection of these two convex polygons, PI and 
Pz, is itself a convex polygon P3, which gives the required 
shadow region where e is invisible due to occlusions from 
P. Fig. 5 illustrates these ideas. Forming the intersection of 
two convex polygons is a well studied problem. Preparata 
[21] reviews the existing methods. Once the shadow region 
is computed, the edge e is then marked as being invisible in 
all the EVR's lying in t h s  region. The EVR's formed by this 
technique are always convex regions when all the buildings are 
of equal height. However, when the buildings are of different 
heights, it is possible that due to the P r o  j ec t process, the 
intersections with the viewing plane cause some of the EVR's 
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Fig. 5. The shadow region of an edge and a polygon of different heights. 

to become nonconvex. The nonconvex EVR’s are detected 
during the Merge process. The Merge process is modified so 
that it does not merge two adjacent EVR’s with identical VL’s 
if the resulting EVR will be nonconvex. Instead the process 
maintains the information that these two EVRs are parts of 
the same EVR. In essence, we represent the nonconvex EVR s 
by their component convex parts. This convexity property of 
the EVR’s is useful in making the computations in the EVR 
formation process easier. 

When the entire rooftop of a building is not oneflat (parallel 
to the ground plane) polygon, it is decomposed into multiple 
flat, convex planar polygons of different heights and each of 
these is considered a separate polygon before applying the 
Partition algorithm. If the rooftop of the building is not 
flat, i.e., it is sloping, then the Project process needs to 
be modified. It is no longer sufficient just to consider two 
vertices for each edge in forming the shadow region. Instead, 
the projection of the entire sloping plane of the rooftop onto 
each of the edges of the other rooftops needs to be considered. 

The world model that we considered consisted of building 
withflat rooftops that were of the same height. However, some 
of the buildings were nonconvex and had to be decomposed 
to component convex subparts. The extensions of the algo- 
rithm to unequal and nonflat rooftops has not been currently 
implemented. 

111. POSITION ESTIMATION 

Given a world model, we form the EVR description of 
the free space as discussed above. This section describes a 
method to estimate the robot’s position and pose using such a 
description. Talluri and Aggarwal present the initial results of 
testing this method [25], [26] using computer simulations. 

We use a two-stage constrained-search strategy to isolate the 
robot’s position and pose. First, we select a small set of EVRs 
likely to contain the robot location by using a modified Hough 
transform strategy for transform clustering. To isolate the EVR 
containing the robot’s location, we form an interpretation 
tree of all possible model-image feature correspondences for 
each EVR. These trees are then searched using the geometric 
constraints imposed by the EVR s and the image features. Each 
tree node is an association between a model and an image 
feature. A path from the root to the leaves of the tree gives a 
set of possible associations between each of the image features 
and a model feature. If no such path exists, then this EVR is 
discarded as not containing the robot location and the next 

EVR in the candidate set is considered. Finally, the correct 
EVR containing the robot location is isolated, and a set of 
model-image feature correspondences is established. All these 
correspondences are then used in a least squares paradigm to 
compute the transformation matrix l ( z ,  y, 6’) and, thus, to 
estimate the robot’s position (x, y) and pose 6’. 

A. Transform Clustering for Model-Image 
Feature Correspondence 

Previous research used the generalized Hough transform and 
its related parameter hashing techniques to perform transform 
clustering to isolate the transformation that maps the model 
features to the image features [SI, [lo], [27], [28]. The 
problems associated with using the Hough transform approach 
to transform clustering are that large transform clusters may 
occur randomly. If these clusters are as large or larger than 
those due to the correct transform, the estimation procedure 
that relies only on the Hough transform will be erroneous. 
If the number of buckets is increased, then the possibility 
of random large clusters is alleviated but the number of 
computations grows rapidly. Grimson [6] summarizes these 
problems with the generalized Hough transform. 

This research suggests a method to reduce the problems 
associated with the Hough transform approach to transform 
clustering [29] by using a partition of the parameter space, 
which is not necessarily uniform. The partition is, in fact, 
intelligent and uses a priori model information. Recall that the 
EVR’s partition the robot’s free space into distinct, nonover- 
lapping regions. In its VL, each EVR has an associated list 
of model features visible in the region. Also, the range of 
0’s for which each feature is visible is stored in the EVR. 
Hence, the EVR’ s effectively partition the entire parameter 
space of (2, y, e ) ,  taking into account the visibility of the 
model features. Thus, given a set of image features to be 
used in the position estimation, the idea is: 1) to hypothesize 
a correspondence between all pairs of model and image 
features; 2) to compute the range of possible transformations 
for this hypothesis; and 3) to vote in all the EVR’s where 
this transformation is feasible. Selecting the EVRs with the 
largest number of votes produces a reduced set of EVR’s that 
are most likely to contain the robot’s location. 

Note that each of the image features is a 2-D line in the 
image plane and that each of the model features is a 3-D line 
segment in the WCS. The transformation that takes the model 
feature into the image feature under perspective projection 
contains three degrees of freedom, as discussed before, and is 
the required robot’s position and pose. Thus, we need at least 
two model-image feature correspondences to be able to solve 
for the three unknowns since each correspondence gives two 
equations using perspective projection. However, by using one 
2-D to 3-D line correspondence, we can solve for the rotation 
0 and arrive at a constraint on the translation (2, y) which is in 
the form of a straight line L: ax + by + c = 0 in the zy-plane. 
For this procedure we use a method similar to one described 
by Liu et al. [30]. This procedure is detailed in Appendix C. 

Thus, for each hypothesized model-image feature pairing, 
we search the EVR list and vote in an EVR if the following 
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conditions are satisfied: 1) the model feature is present in the 
EVR’s VL; 2) the 19 computed from the transformation lies 
within the range of angles for which the model feature is 
visible in the EVR; and 3) the straight Line L representing 
the constraint on the translation intersects the EVR. After 
considering all the pairings, we search for clusters in the 
EVR’s by considering the EVR’s with a large number of votes 
as the list of EVR’s to be considered as candidates for position 
estimation. The advantage of this approach is that the noise 
immunity provided by the Hough transform approach gives a 
robust method to help prune the list of E m ’ s  and to isolate a 
smaller subset most likely to contain the robot’s position. From 
our experiments, we find this transform cIustering method to 
be quite effective. 

B. Interpretation Tree Search 
By using the transform clustering technique described 

above, we now have a small set of candidate EVR’s 
likely to contain the robot’s location. Instead of using a 
traditional backtrack, depth-first search technique to search 
the interpretation trees corresponding to the candidate EVR, 
we exploit the tree’s repetitive nature and the EVR paradigm 
to evolve a more efficient search strategy. We separate the 
geometric constraints into two types: unary constraints and 
coupled constraints. Unary constraints are those that need to be 
satisfied by each of the model-image feature correspondences. 
Coupled constraints are those that need to be satisfied by a set 
of model-image feature correspondences. 

The following unary constraints need to be satisfied by a 
model-image feature correspondence: 

* Rotation Constraint: The computed rotation angle 0 
should lie within the range of possible orientation angles 
stored for that model feature in the EVR’s visibility list. 

* Translation Constraint: The straight line L representing 
the constraint on the translation vector should intersect 
the EVR. 

The following coupled constraints need to be satisfied by a 
set of model-image feature correspondences: 

Rotation Consistency Constraint: All the rotation an- 
gles computed by the correspondences in the set should 
be consistent. This is tested by checking if the rotation’s 
standard deviation is less than a certain threshold value. 
Ordering Constraint: The left-to-right order in which 
the set of image features are visible in the image plane 
should be maintained by the corresponding world model 
features. Once the robot’s rotation is computed, the 
ordering of the world model features can be verified from 
the stored world model. 
Transformation Consistency Constraint: The final po- 
sition estimated by combining all the correspondences 
using a least squares technique should lie within the EVR, 
and the estimated pose should be valid in the EVR. 

For each of the candidate trees, we initially propagate the 
unary constraints and prune large subtrees from the search 
space. The sparse tree so formed is then searched using the 
coupled constraints. The coupled constraints are then applied 

to determine if any of the paths results in a valid set of 
model-image feature correspondences. 

A path from the tree’s root to its leaves gives a set of 
possible associations between each of the image features 
and a model feature. If no such path exists, then this EVR 
is discarded as not containing the robot’s location and the 
next EVR in the candidate set is considered. Finally, the 
correct EVR containing the robot’s location is isolated and a 
set of model-image feature correspondences is isolated. Note 
that we need only two model-image feature correspondences 
to compute the three unknowns in the robot’s position and 
pose. For better noise immunity when there are more than 
two correspondences in the path, we use a least squares 
pzadigm to combine the correspondences and compute the 
transformation matrix I(%, y, 8) and, hence, estimate the 
robot’s position (2, y) and pose 8. We find this technique of 
searching the interpretation tree to be much more efficient, 
and computationally less expensive [31] than a traditional 
backtrack search technique suggested by previous researchers 

Note that our research considered the drop-off problem; that 
is, the robot does not have an a priori estimate of its current 
location. However, if the robot can operate in a boot-strap 
mode or use its odometry, and thus maintain a rough estimate 
of its position and pose, this estimate can reduce the search 
space significantly. The current estimate can be utilized to 
isolate the robot’s position to within a few EVR’s so that only 
these E m ’ s  need to be considered when searching for the 
exact location Also, if the robot can identify landmarks (some 
of the 3-D features), this ability can be used to isolate the 
robot’s position to within only those EVRs containing these 
landmark edges in their VL‘s. 

[51, t71, ~321. 

C. Noise E8ects 
The noise sources that can affect the position estimation are 

the errors in image feature extraction and those in the world 
model description. If the environment of the robot contains 
obstacles, such as trees and telephone poles, that do not 
belong to the model and occlude some of the model features, 
it is possible that the feature detector used to extract the 
rooftop lines may: 1) m i s s  some of the model lines; 2) extract 
false lines; and 3) incorrectly estimate the line parameters of 
the extracted lines. Also, if the world model description is 
incomplete (for example, if some of the buildings parts are 
missing or if they are stored incorrectly in the world model), 
then the above phenomenon may also occur. We wish to make 
our technique robust to such occurrences. 

Since there are only three unknowns in the robot’s position 
and pose, (2,  y, e ) ,  we only need two correct model-image 
feature correspondences to solve for these unknowns. Thus, 
even if some of the image features corresponding to the 
model features are missing, we can still estimate the robot’s 
position and pose if we find at least two correct model-image 
feature correspondences. Thus, some lines being missed by 
the feature extractor does not pose a serious problem. To 
account for the noise in the edge detector output in the feature 
extraction stage, we also use a least square fit to the edge 
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(a) (b) 
Fig. 6 .  (a) The robot’s environment. (b) The labels of the world model edges (top view). 

TABLE I 
Two OF THE EVR‘s AND THE CORRESPONDING VL‘s 
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Fig. 7. The EVR representation of the environment. 
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detector output to form the line parameters. This technique 
has the effect of smoothing out the noise effects. We also 
dilute the EVR by making its boundaries fuzzy; that is, the 
EVR extent in the “cy plane is made more flexible. Similarly, 
the range of possible orientations for each edge in the VL 
of the EVR is also made more flexible. Thus, the basic idea 
is to introduce tolerance bands to handle the effects of noisy 
sensor data. 

To deal with spurious image features, we propose a tech- 
nique similar to the one suggested by Grimson [8]. The idea is 
to introduce null features below each node in the search tree. 
Pairing a sensor feature with this null feature is equivalent to 

lity List 1 
emin deg 
-75.437 
-47.011 
-75.437 
-30.000 
-30.000 
-19.771 
-18.142 
-120.000 
-120.000 
-118.506 
-118.598 
-103.888 
-109,015 

30.000 
50.599 
66.330 
75.219 

0.398 
1.410 
-0.639 
30.000 

discarding the sensor feature as inconsistent with the model. 
The null feature thus acts as a wild curd in the match. 
Therefore, pairing any sensor feature with the null feature is 
considered to be consistent; however, this pairing does not 
contribute to the transform computation. By using this null 
branch approach, we associate all the true image features to 
the model features and the spurious image features to the null 
branches. 

We find that noise effects are more significant on short 
sensor features of less than ten pixels. To deal with this, if 
the line is too short, we do not consider it in the hypothesis 
stage. Since our system can handle missing features, removing 
these short lines does affect the position estimation strategy. 
The tolerance bands introduced in the EVR’s are also made 
functions of the line lengths so that the shorter lines have 
larger tolerance bands. We also weigh the contribution of the 
image features by length, considering the longer features more 
reliable. In combining multiple matches in the final stage, 
which computes the actual robot’s position and pose, we use 
a weighted least squares estimate. 
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(a) 

Fig. 8. (a) The image used by the robot in position estimation. (b) The output of the line detector. 

Fig. 9. 
corresponding to the model features and the plain lines as noise feames. 

The lines used as image features. The lines in bold are isolated a.~ 
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Fig. 10. EVR number versus the number of votes. 

These techniques are implemented and tested using a scale 
model of a real airport. The results are quite promising, and 

90 

\ 
9 

Fig. 11. The candidate set of EVRs isolated by the Hough Transform. 

the robot’s position and pose are estimated to a high degree of 
accuracy, even in the presence of noise. Section IV discusses 
the results. 

m. EXPERMENTAL RESULTS 

The technique of estimating the robot’s position and pose 
robot using the EVR’s has been implemented and tested using 
a scale model of a real airport environment. The scale model 
was built using the blueprints of the Austin Executive Park 
airport. Fig. 6(a) shows the environment. The airport contains 
three polyhedral buildings, one having a nonconvex rooftop. 
Here the 3-D descriptions of the rooftops are assumed to be 
known to the robot as the world model. Fig. 6(b) shows the 
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Fig. 12. (a) The EVR isolated by the search as the one containing the robot’s position. (b) The estimated robot location. 

labeled polygons constituting the rooftops and their edges. 
Fig. 7 shows the EVR representation of this description. In 
forming this description, the nonconvex rooftop is partitioned 
into two component convex polygons, such that the scene now 
contains four rooftop polygons. Table I lists two of the EVRs 
and their VL’s. For the given scene there are 98 EVRs. 

We used a CCD camera to capture an image of the scale 
model. Fig. 8(a) shows one such image used in the position 
estimation process. The camera’s internal calibration parame- 
ters, the lens center, ( u g  , vg) and the scale factors (S,, S,) are 
first calculated. Using the rooftop lines, we need to establish 
a correspondence between this image and the model shown in 
Fig. 6(a) and estimate the robot’s position and pose. 

The image contains a significant amount of noise arising 
from obstacles that are not part of the model, such as trees 
and telephone poles. A Canny edge detector detects the edges 
from this image. We chain adjacent pixels and fit lines to them 
and then threshold all lines less than 20 pixels long. Fig. 8(b) 
shows the output from this operation. We use a simple rooftop 
lines extraction process by scanning the lines in Fig. 8(b) from 
the top and selecting only the top-most lines. We then remove 
the lines that lie completely within the shadow of a selected 
line. This process yields a set of image features used in the 
localization process as shown in Fig. 9. Note that due to the 
obstacles and errors in feature detection, some of the rooftop 
lines are missing and a number of spurious lines are included 
as image features. However, we find that by using the position 
estimation scheme described above, we can isolate the spurious 
features from the true image features and accurately estimate 
the robot’s position and pose. Eleven image features in this 
scene are used in the position estimation. In Fig. 9, the hue 
image features are indicated by bold lines and noise features 
by plain lines as isolated by the constrained search technique. 

We use the transform clustering technique outlined before to 
initially select the EVR s likely to contain the robot’s position. 
We hypothesize a correspondence between each of the eleven 
lines extracted from the image in Fig. 9 and each of the model 

~ 

13 

edges in Fig. 6(a). For each hypothesis we compute the range 
of possible transformations and vote in all the EVRs satisfying 
this transformation. Fig. 10 plots the EVR number versus the 
number of votes for each EVR. We select the five EVRs 
with the largest number of votes as the likely candidates to 
contain the robot’s position. Fig. 11 shows these five EVR’s. 
The actual robot location is in EVR number 42. This EVR has 
the highest number of votes, 20, and hence is included in the 
list of likely candidates. 

For each of the five candidate EVRs, an interpretation tree 
is formed of the possible pairings between the image edges 
and the world model edges in the EVR’s VL. We also use 
the null branch at each tree node to handle noise features. 
These trees are then searched by first propagating the unary 
constraints and then using the coupled constraints. We find 
that the tree associated with EVR 42 is the only one with 
a path from the root to the leaf. Fig. 12(a) shows this EVR. 
By combining all the model-feature correspondences dictated 
by this path using a least squares technique we estimate the 
robot’s position and pose to be (874.933,411.292) and its pose 
to be 1.026233”. Fig. 12(b) shows the robot’s location. These 
estimates are found to be quite close to the true values. Thus, 
the path correctly associates the true image features with the 
model features and the noise features with the null branches. 

A number of test runs are performed using the given world 
model description and different robot positions. Table I1 shows 
the results. In most cases the estimation procedure succeeds 
in isolating the robot’s position and pose quite accurately. 

Figs. 13-15 show the results of the position estimation 
process for another test run. A point worth noting in this 
test run is that, some of the image features are broken due 
to the partial occlusions by the telephone pole. However, 
since the constrained search algorithm allows for multiple 
image features to match to the same model feature, both these 
image features are labeled as corresponding to the same model 
feature and hence resulting in an accurate position and pose 
estimate. 
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(a) (b) 

Fig. 13. (a) The image used by the robot in position estimation. (b) The output of the line detector. 

@I 
Fig. 14. 
(b) The candidate set of EVR’s isolated by the Hough Transform. 

(a) The lines used as image features. The lines in bold are isolated as corresponding to the model features and the plain lines as noise features. 

Occasionally the search strategy isolates more than one EVR 
as containing the robot’s location. In such cases, we translate 
the robot by a known extent to a different position and consider 
another image for the position estimation. The search results at 
this second stage must now satisfy the additional constraints of 
the first position. These additional constraints help eliminate 
the ambiguity in the robot’s position. 

V. CONCLUSION 
This paper considers the problem of establishing correspon- 

dence between a stored 3-D model and a 2-D image of it. We 
present an approach to solving this problem in the context of 

autonomous navigation of a mobile robot in an outdoor urban, 
man-made environment consisting of polyhedral buildings. 
The 3-D descriptions of the lines constituting the buildings’ 
rooftops are assumed to be given as the world model. The 
robot’s position and pose are estimated by establishing a 
correspondence between the model features and the straight 
line features extracted from the images acquired by the robot. 

The model-image feature correspondence problem is formu- 
lated as a two-stage constrained-search problem. Geometric 
visibility constraints are used to reduce the search space of 
possible model-image feature correspondences. Techniques are 
presented for effectively deriving and capturing these visibility 
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Fig. 15 The EVR isolated by the search as the one containing the robot’s position. (b) The estimated robot location. 
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constraints from the given world model by developing a 
novel, intermediate representation of the environment, called 
the Edge Visibility Regions (EVR‘s). Using a modified Hough 
transform technique, a small set of candidate EVRs  most 
likely to contain the robot’s location are isolated. For each 
of these candidate EVR’s, an interpretation tree is formed 
hypothesizing all possible pairings between the world model 
features and the image features. This tree is then searched 
for a consistent set of matches between the world model 
features and their images. The tree is pruned using the geo- 
metric constraints between these features captured by the EVR 
representation of the environment. The position estimation 
technique presented is shown to be robust and accurate even in 
the presence of errors in feature detection, incomplete model 
description, and occlusions. Experimental results of testing this 
approach using a model of an airport scene are presented. 

Future work includes extending the approaches developed 
in this research to buildings that are not necessarily polyhedral 
and also exploring the applicability of these techniques to other 
areas of computer vision research, such as model-based object 
recognition. 
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APPENDIX 

A. Estimating the Number of EVR’s 
In this section, we derive a loose upper bound on the max- 

imum number of EVR’s generated by the Partition algorithm 
given mn sided convex polygons. We show that this upper 
bound is polynomial in m and n, O(n2m4). The derivation is 
based on induction, and is similar to that outlined by Ikeuchi 
and Kanade [I71 in the context of aspect graphs for object 
recognition. 

Consider the case of kn-sided convex polygons in a plane. 
Let the total number of lines in the plane be given by L(k ) .  
We have 

L ( k )  = L(k - 1) + n + 2 .  n .  ( I C  - I) + 2 . n . ( k  - 1) (1) 

where the first term indicates the number of lines already 
existing after considering ( k  - 1) polygons; the second term 
indicates the number of lines drawn by extending the kth 
polygon’s edges; the third term accounts for the shadow lines 
drawn from the n edges of the kth polygon onto the other 
k - 1 already existing polygons; and, finally, the fourth term 
accounts for the shadow lines drawn from each of the n edges 
of the existing k - 1 polygons onto the kth polygon. Recall 
that each polygon edge contributes two shadow lines for each 
existing polygon lying on the visible side of the edge. Solving 
(1) we have 

L ( k )  = kn + 4n[(k - I) + ( k  - 2) + . . .I] 
= kn(2IC - 1). (2)  

Let T( m) denote the maximum number of EVR s generated 
when we have m n-sided convex polygons in a plane under 
perspective projection. Note that T(0) = 1. Consider the 
situation where are m - 1 polygons already exist in the plane. 
The maximum number of lines in the plane is L(m - 1) = 
n(m - 1)(2m - 3). Now when we consider the mth polygon, 
we need to perform three steps that increase the number of 
lines and thus the EVR’s. First, each edge of the mth polygon 
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is extended, which gives n lines. Second, for each of the n 
edges of this mth polygon, we draw two shadow lines onto 
each of the other m - 1 polygons already in the plane; this 
gives 2n(m - 1) lines. Finally, for each of the n edges of 
the m - 1 polygons, we draw two shadow lines onto the mth 
polygon, which also gives 2n(m - 1) lines. So, we add a total 
of n + 4n(m - 1) new lines by adding the mth polygon. 

If we assume that each of these n(4m - 3)  lines is added 
successively, the number of EVR’s grows after adding each 
new line. We can derive the maximum number of EVR’s 
by induction. Let T(m)k denote the number of EVR’s after 
drawing the kth line. Since we start with T(m - 1) EVR’s 
and L(m - 1) lines, after drawing the first additional line, the 
number of EVR’s, T(m)l ,  is 

T(m)1 = T(m - 1) + L(m - 1) + 1 

since this line is cut by the existing L(m - 1) lines into 
L(m - 1) + 1 segments (maximal case). These segments will 
divide each of the L(m - 1) + 1 regions into two regions, thus 
adding L(m - I) + 1 new EVR’s. Proceeding in this fashion, 

T(m)2 =T(m)1+ L(m - 1) + 2, 
T (m) n(4m - 3) 

= T(m) 
= T(~n)~(4~--3) - -1+ L(m - I) + n(4m - 3) 

and 
n(4m-3) 

T(m) = T(m - 1) + n(4m - 3>qm - 1) + 

+ 2  

i 
z=1 

[n(4m - 3)12 n(4m - 3)  
= T ( m - 1 ) +  

= T ( m  - I) + 0(n2m3) + 0(n2m2) + ~ ( m n )  
+ n(4m - 3)[n(m - 1)(2m - 3)] 

= O(n2m4). 

It is worth pointing out that although the maxim- number 
of regions suggested by this derivation is O(n2m4), in practice 
it is very unlikely that so many EVR’s will be generated. 
First, the derivation assumes that whenever a new line is 
drawn, it cuts all the existing lines in the plane, which very 
rarely happens. Second, the shadow lines are considered drawn 
onto all the existing polygons at any given time. In practice, 
however, we only need to draw the shadow lines onto the 
polygons lying on the edge’s visible side. Since we consider 
convex polygons, the situation where all the polygons lie on all 
the edge’s visible sides is an impossible one. Also, the Merge 
process is quite effective and significantly reduces the number 
of regions, particularly as we consider an increasing number 
of polygons. After accounting for all these factors, we find 
the number of regions to be much smaller than O(n2m4). 
However, this upper bound serves the useful purpose of 
showing that the number of EVR’s, in the worst case, is still 
polynomial in n and m. 

B. Position Estimating Using a 3-0 to 
2-D Line Correspondence 

This section derives a method to estimate the pose and to 
arrive at a constraint on the robot’s position using a 3-D to 
2-0 line correspondence. The method is similar to the one 
described by Liu et al. [30]. 

Let ozyz represent the world coordinate system (WCS) in 
which the 3-D descriptions are given and let o’z’y’z’ represent 
the robot coordinate system (RCS). Let a p = (x, y, 2)’ be a 
point in the WCS and let p’ = (x’, y’, z’)’ be the point after 
being transformed to the RCS. So we have p’ = Rp+T, where 
R = Rz(-o~Rv(~) .  R+o) is an unknown rotation about the 
z-axis of the WCS and RY(+) is a known rotation about the 
y-axis of the WCS to account for the tilt angle of the camera. 
Note that the roll angle $ = 0. So R has only one unknown 
6. T denotes the translation vector [T = T ( x ,  y, Z H ) ] .  It has 
two unknowns x, and y, because the ZH translation, which is 
the height of the robot above the ground plane, is measurable 
and thus a constant. 

Let O Y Z  denote the coordinate system of the image plane. 
The origin of this 2-D coordinate system is in the image 
plane’s lower left comer. Let SZ and Sy denote the scale 
factors which account for the pixel spacing and the focal 
length along the image plane’s rows and the columns, re- 
spectively. Let YO and 20 denote the point in thee image 
plane where the optical axis intersects the image plane. These 
four parameters, Sy, SZ, YO, 20, are the camera’s internal 
calibration parameters. These parameters are calculated using 
a calibration procedure. Then a 3-D point p’ = (d, y’, z ’ ) ~  
in the RCS has as its image P = (Y, 2) and they are related 
by the perspective projection as Y = -Sy(y’/z‘) + YO and 

If we represent the 3-D line I in the WCS in the parametric 
form, I:@’= n’t+p’o, where n’= (f1, 91, is the direction 
of the line and $0 = (20, yo, 2 0 ) ~  is a point on the line. 
The image of this line in the image coordinate system, the 
image feature, can be expressed as L: 2 = cxY + p. Using 
the perspective projection relations, we have L: Sz (z’/x’) + 
20 = aSy(y’/x’) + Yea: + /3. This can be expressed as 
M :  Ax‘+By’+Cz’ = 0, where A, B ,  C are known constants 
and satisfy the constraint A2 + B2 + C2 = 1. This is the 
equation of the projection plane co_ntaining the 3-D line I 
expressed in the RCS. The vector N = (A ,  B, C)’ is the 
normal to the plane Ad. Inzhe RCS, we can express the 
direction of the 3-D line as n’ = Rn’. 

Since &e 3-D @e is always perpendicular to its projection 
plane, we have N . n‘ = 0 or 

2 = -Sz(z’/x’) + 2,. 

$.RZ=O. (3)  

Now the rotation matrix R has only one unknown, 0, since 
q5 is assumed to be known, we can solve (3) for B. There are 
two values of 0 that satisfy this, given by 81 and 02.  

Once we have the rotation matrix R, we can solve for a 
constraint on the translation T ( z ,  y) using this R. Note that 
any point on the 3-D line in the RCS must lie on the projection 
plane of this line. So the vector from the origin (optical center) 
to this point must be perpendicular to the normal of the 
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projection plane. So, for a known point po on the 3-D line 
in the WCS, we have the transformed point pb = Rpo + T in 
the RCS and z. [Rpo + T ]  = 0, where PO = (XO, yo, 20) or 

@.T=-d .Rpo .  (4) 

From (4) and the known values of 0 we have constraints on 
the translation of the form Az + B y  = s1 corresponding to 81 
and Ax + By = s2 corresponding to Oz. 
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